Percentages help compare changes. Learn to increase or decrease amounts, find multipliers, and reverse percent changes in realistic KS3 money and measure problems.
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
You can find more about this topic by visiting BBC Bitesize - Percentages
|
Not a bad little earner!
|
||||||||||||||||||||||||
Remember, the change is always compared with the original value
|
13,500 - 11,200 = 2,300
(13,500 ÷ 2,300) x 100 = 17.037.... |
||||||||||||||||||||||||
68 ÷ 100 = 0.68
10.2 ÷ 0.68 = 14.70588235294118.... |
3.75 ÷ 97 = 0.0387
0.0387 x 100 = 3.87 |
||||||||||||||||||||||||
The increase is 36p. To work out the percentage 0.36 / 7.2 = 0.05 = 5%
|
33 ÷ 107 = 0.3084
0.3084 x 100 = 30.84 |
||||||||||||||||||||||||
185,000 - 97,000 = 88,000
97,000 ÷ 100 = 970 88,000 ÷ 970 = 90.722 |
8.5 ÷ 0.68 = 12.5
|
M = P( 1 + i )n
Here, M = the final number of bees; P = the initial number of bees; i = the percentage increase (if it is a decrease, it will be negative; n = the number of days (but it could be weeks/months/years or any time period, depending on the problem) and it is the POWER to which (1 + i) has to be raised. Plug in the numbers and do the calculation