Learn how to calculate the mean from frequency tables. KS3 Maths teaches you how to work out totals and averages when data appears more than once.
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
You can find more about this topic by visiting BBC Bitesize - Averages
You might get 102 in one box and 98 in another, but the contents should always be about 100
|
Remember, the mode is the most common
|
||||||||||||||||||||||||
(8 x 0.50) + (5 x 0.60) + (4 x 0.75) + (3 x 1)
|
Modal amount = mode (most frequent)
|
||||||||||||||||||||||||
Both the 10th and 11th values are 60p
|
Mean values will often be fractions rather than whole numbers
|
||||||||||||||||||||||||
Mean = total ÷ 20. £13.00 ÷ 20 = 0.65
|
The mean is higher than the amount spent by most customers. 13 of them spent 60p or less
|
||||||||||||||||||||||||
1,000 x 3 = 3,000 minutes. Divide by 60 to convert to hours
|
Total call time is (9 x 5) + 10 = 55 so mean is 55 ÷ 10 = 5.5
|