Circles are everywhere, from wheels to coins. Learn radius, diameter, and π to find circumference and area, then tackle real KS3 problems.
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
|
|
You can find more about this topic by visiting BBC Bitesize - Circles
In circles we call this the circumference rather than the perimeter
|
It radiates out from the circle's centre
|
||||||||||||||||||||||||
The diameter is like 2 radii on the same bearing
|
Remember to use the radius of the circle and not the diameter
|
||||||||||||||||||||||||
The radius = 7 cm, so the calculation is: 3.141592 x 7 x 7 = 153.938 cm
|
The radius = 10 m, so the calculation is: 3.141592 x 10 x 10 = 314.159 m2
|
||||||||||||||||||||||||
Remember, you are asked for the diameter not the radius
|
Circumference = 2 x 3.141592 x radius. This formula allows you to make intelligent estimates before you work out the real answer
|
||||||||||||||||||||||||
Using C = 2 ? r, 2 x 3.141592 x 20, C = 125.66 m
|
Using C = 2 ? r, 2 x 3.141592 x 100, C = 628.3184 cm. Remember to use radius and not diameter!
|