USUS UKUKIndiaIndia

Every Question Helps You Learn

Join Us
Streak
Leading Streak Today
Your Streak Today
Streak
Leading Streak Today
Your Streak Today
Radioactivity - Nuclear Fusion
Every star goes through a life cycle, which is determined by its size.

Radioactivity - Nuclear Fusion

This Physics quiz is called 'Radioactivity - Nuclear Fusion' and it has been written by teachers to help you if you are studying the subject at senior high school. Playing educational quizzes is one of the most efficienct ways to learn if you are in the 11th or 12th grade - aged 16 to 18.

It costs only $12.50 per month to play this quiz and over 3,500 others that help you with your school work. You can subscribe on the page at Join Us

Nuclear fusion is the process that powers active stars. It is a process which can create vast amounts of energy with very little fuel required and no toxic waste is produced. It is the goal of many scientists to try to harness this process to help solve the world's fuel crisis. During nuclear fusion, two atomic nuclei join together to form a larger nucleus. You can think of it as being like the opposite to nuclear fission where a large nucleus splits into smaller ones.

Fission requires a neutron to set off the chain reaction. For fusion to occur, large amounts of energy are required to trigger it. That is one of the biggest difficulties for the scientists trying to make fusion work. The other difficulty is that the fuel for nuclear fusion is hydrogen at high temperatures, and that makes it extremely hard to handle.

The reason that it takes such high energies is that the nuclei are positively-charged and they will repel each other. Electrostatic repulsion is very strong for atomic scale objects that are very close together. Scientists have managed to get fusion reactions to work - but only in the hydrogen bomb which needs the energy of a small nuclear explosion to set it off.

The nuclear fusion process that releases energy inside of a star converts hydrogen nuclei into helium nuclei. A star starts off life as a large cloud of gas (in space, that is mainly hydrogen) and dust. Slowly, over millions or even thousands of millions of years, gravity causes the gas cloud to collapse in on itself. As you know, when you compress a gas, its temperature increases. On the scale of a star, even a small one like the Sun (it is classified as a yellow dwarf star), this can reach several million degrees Celsius. According to the kinetic theory, at such high temperatures, the nuclei of hydrogen will be moving around at extremely high speeds therefore the collisions will be high energy. If the collisions have sufficient energy, hydrogen nuclei will stick together (fuse) to form the isotopes of hydrogen called duterium and tritium. These isotopes then fuse to form helium nuclei. The actual process is more complex than this but, happily for you, you don't need to know the full details in senior high school.

All of the naturally-occurring elements in the world around us have been created by nuclear fusion. When stars have used up their stocks of hydrogen fuel, they begin to use helium instead. You may have heard of red giant stars - they are powered by this type of nuclear fusion. The products of helium fusion are the elements up to and including iron, depending on the size of the star. This will happen to our Sun in about five thousand million years. When the helium is used up, nuclear fusion stops. For small stars like the Sun, they will just shrink to form a white dwarf star which will then gradually lose its heat into space to become a black dwarf - a dead star that no longer shines. For stars that are a lot larger than the Sun, the story is very different. When fusion stops, they collapse in on themselves very rapidly, which heats up the gasses to an unbelievably high temperature. This triggers an explosion called a supernova and it is the energy from this explosion that creates the final nuclear fusion of a star's life. In it, there is sufficient energy for the nuclei of the elements in the star to fuse, forming the rest of the elements, which are scattered through space.

1.
Which element is the main source of fuel that our sun uses for the process of nuclear fusion?
Hydrogen
Zinc
Boron
Lead
The Sun is about four and a half thousand million years old. This is about half way through its life cycle
2.
What is nuclear fusion?
Nuclear fusion is the separation of an atomic nucleus into two smaller nuclei
Nuclear fusion is the joining of two atomic nuclei into one larger nucleus
Nuclear fusion is the process by which atoms absorb energy
Nuclear fusion occurs when atoms absorb electrons
The process requires large amounts of energy to start. When it has started, the energy released from the fusion reaction is more than enough to keep it going - it is a chain reaction. Overall, it is highly exothermic
3.
How were most of the heavier elements in the universe created?
Within stars and ejected into space when the stars exploded
Gravity pulled smaller atoms together
Electro-attraction
Smaller atoms randomly collided together to form heavier elements
It is in supernova explosions that the naturally-occurring elements with atomic numbers greater than that of iron are formed
4.
When a star dies, which of the following could a star turn into?
White dwarf
Black hole
Supernova
All of the above
The material in a white dwarf is extremely dense as there is no more radiation pressure from nuclear fusion to balance the inward pull of gravity
5.
What force pulls dust and gas together in space to form stars?
Electro-weak force
Electromagnetic force
Gravity
Strong force
Anything that has mass has a gravitational attraction, however small
6.
Which of the following is an example of nuclear fusion?
Energy released by nuclear power plants
Energy created to power trains
Energy released in stars
Energy released to thrust rockets into space
Stars are excellent examples of the process of nuclear fusion. They burn vast quantities of fuel every second, and reach incredibly hot temperatures
7.
How can we detect black holes if we can't see them?
We can see them when other stars shine on them
We can detect their immense gravitation strength affecting other objects
We can send probes into space and if we lose one we know it has entered a black hole
There is no way to detect black holes
No one has ever seen a black hole directly, but we know they are there because of the gravitational effect they have on other objects within their vicinity
8.
Why does a star not explode or collapse during the 'main sequence' of its life?
Not enough energy within the star to explode or collapse
The forces within it are in equilibrium
The star is solid so cannot collapse
They do explode when they reach their 'main sequence'
The gravitational pull of the weight of the star is in equilibrium with the outward radiation pressure generated by the burning of the fuel within the core of the star
9.
Which element was abundant in the early universe?
Hydrogen
Iron
Oxygen
Zinc
It is the simplest element
10.
Every star goes through a life cycle. What is this life cycle determined by?
Elements within the star
Size of the star
Gravity surrounding the star
Number of planets orbiting the star
Stars containing the most mass burn the brightest and have the shortest lifespan. Without these super-massive stars, only the elements up to and including iron would exist naturally
Author:  Martin Moore

© Copyright 2016-2024 - Education Quizzes
Work Innovate Ltd - Design | Development | Marketing

We use cookies to make your experience of our website better.

To comply with the new e-Privacy directive, we need to ask for your consent - I agree - No thanks - Find out more